step_outliers_h2o.extendedIsolationForest creates a specification of a recipe step that will calculate the outlier score using h2o.extendedIsolationForest from h2o.

step_outliers_h2o.extendedIsolationForest(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  outlier_score = NULL,
  columns = NULL,
  name_mutate = ".outliers_h2o.extendedIsolationForest",
  options = list(extension_level = "max"),
  init_options = list(),
  skip = TRUE,
  id = rand_id("outliers_h2o.extendedIsolationForest")
)

# S3 method for step_outliers_h2o.extendedIsolationForest
tidy(x, ...)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose variables for this step. See selections() for more details.

role

not defined for this function

trained

A logical to indicate if the quantities for preprocessing have been estimated.

outlier_score

a placeholder for the exit of this function don't change

columns

A character string of variable names that will be populated (eventually) by the terms argument.

name_mutate

the name of the generated column with h2o.extendedIsolationForest scores

options

a list with arguments to h2o::h2o.extendedIsolationForest function.

init_options

a list with parameters to h2o::h2o.init

skip

A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id

A character string that is unique to this step to identify it.

x

A step_outliers_h2o.extendedIsolationForest object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any), with the name on name_mutate and the scores calculated. For the tidy method, a tibble with columns index (the row indexes of the tibble) and outlier_score (the scores).

Details

All columns in the data are sampled and returned by juice() and bake().

When used in modeling, users should strongly consider using the option skip = TRUE so that this operation is not conducted outside of the training set.

Examples

library(recipes)
library(tidy.outliers)
rec <-
  recipe(mpg ~ ., data = mtcars) %>%
  step_outliers_h2o.extendedIsolationForest(all_predictors()) %>%
  prep(mtcars)
#> 
#> H2O is not running yet, starting it now...
#> 
#> Note:  In case of errors look at the following log files:
#>     /var/folders/24/8k48jl6d249_n_qfxwsl6xvm0000gn/T//RtmpAkhFmm/file21a0138aa5d7/h2o_runner_started_from_r.out
#>     /var/folders/24/8k48jl6d249_n_qfxwsl6xvm0000gn/T//RtmpAkhFmm/file21a0738dd046/h2o_runner_started_from_r.err
#> 
#> 
#> Starting H2O JVM and connecting: ... Connection successful!
#> 
#> R is connected to the H2O cluster: 
#>     H2O cluster uptime:         4 seconds 80 milliseconds 
#>     H2O cluster timezone:       UTC 
#>     H2O data parsing timezone:  UTC 
#>     H2O cluster version:        3.38.0.1 
#>     H2O cluster version age:    4 months and 26 days !!! 
#>     H2O cluster name:           H2O_started_from_R_runner_yrs698 
#>     H2O cluster total nodes:    1 
#>     H2O cluster total memory:   3.10 GB 
#>     H2O cluster total cores:    3 
#>     H2O cluster allowed cores:  3 
#>     H2O cluster healthy:        TRUE 
#>     H2O Connection ip:          localhost 
#>     H2O Connection port:        54321 
#>     H2O Connection proxy:       NA 
#>     H2O Internal Security:      FALSE 
#>     R Version:                  R version 4.2.2 (2022-10-31) 
#> Warning: 
#> Your H2O cluster version is too old (4 months and 26 days)!
#> Please download and install the latest version from http://h2o.ai/download/
#> 
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

bake(rec, new_data = NULL)
#> # A tibble: 32 × 12
#>      cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb   mpg .outliers…¹
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>       <dbl>
#>  1     6  160    110  3.9   2.62  16.5     0     1     4     4  21         0.390
#>  2     6  160    110  3.9   2.88  17.0     0     1     4     4  21         0.389
#>  3     4  108     93  3.85  2.32  18.6     1     1     4     1  22.8       0.414
#>  4     6  258    110  3.08  3.22  19.4     1     0     3     1  21.4       0.440
#>  5     8  360    175  3.15  3.44  17.0     0     0     3     2  18.7       0.448
#>  6     6  225    105  2.76  3.46  20.2     1     0     3     1  18.1       0.435
#>  7     8  360    245  3.21  3.57  15.8     0     0     3     4  14.3       0.451
#>  8     4  147.    62  3.69  3.19  20       1     0     4     2  24.4       0.473
#>  9     4  141.    95  3.92  3.15  22.9     1     0     4     2  22.8       0.406
#> 10     6  168.   123  3.92  3.44  18.3     1     0     4     4  19.2       0.401
#> # … with 22 more rows, and abbreviated variable name
#> #   ¹​.outliers_h2o.extendedIsolationForest

tidy(rec, number = 1)
#> # A tibble: 32 × 3
#>    index outlier_score id                                        
#>    <int>         <dbl> <chr>                                     
#>  1     1         0.390 outliers_h2o.extendedIsolationForest_bAnZj
#>  2     2         0.389 outliers_h2o.extendedIsolationForest_bAnZj
#>  3     3         0.414 outliers_h2o.extendedIsolationForest_bAnZj
#>  4     4         0.440 outliers_h2o.extendedIsolationForest_bAnZj
#>  5     5         0.448 outliers_h2o.extendedIsolationForest_bAnZj
#>  6     6         0.435 outliers_h2o.extendedIsolationForest_bAnZj
#>  7     7         0.451 outliers_h2o.extendedIsolationForest_bAnZj
#>  8     8         0.473 outliers_h2o.extendedIsolationForest_bAnZj
#>  9     9         0.406 outliers_h2o.extendedIsolationForest_bAnZj
#> 10    10         0.401 outliers_h2o.extendedIsolationForest_bAnZj
#> # … with 22 more rows